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Abstract

It has been known that the space-time CE/SE method can be used to obtain 1D, 2D, and 3D steady
and unsteady flow solution with Mach number ranging from 0.0028 to 10. However, it is also known that
a CE/SE solution may become overly dissipative when Mach number is very small. As an initial attempt
to remedy this weakness, new 1D Courant number and Mach number insensitive CE/SE Euler solvers
are developed using several key concepts underlying the recent successful development of Courant number
insensitive CE/SE schemes. Numerical results indicate that the new solvers are capable of resolving crisply
a contact discontinuity embeded in a flow with the maxmum Mach number = 0.01.

1. Introdution

The space-time conservation element and solution element (CE/SE) method is a high-resolution and
genuinely multidimensional method for solving conservation laws [1–58]. Its nontraditional features include:
(i) a unified treatment of space and time; (ii) the introduction of conservation elements (CEs) and solution
elements (SEs) as the vehicles for enforcing space-time flux conservation; (iii) a novel time marching strategy
that has a space-time staggered stencil at its core and, as such, fluxes at an interface can be evaluated
without using any interpolation or extrapolation procedure (which, in turn, leads to the method’s ability
to capture shocks without using Riemann solvers); (iv) the requirement that each scheme be built from a
non-dissipative core scheme and, as a result, the numerical dissipation can be controlled effectively; and (v)
the fact that mesh values of the physical dependent variables and their spatial derivatives are considered as
independent marching variables to be solve for simultaneously. Note that CEs are nonoverlapping space-time
subdomains introduced such that (i) the computational domain can be filled by these subdomains; and (ii)
flux conservation can be enforced over each of them and also over the union of any combination of them.
On the other hand, SEs are space-time subdomains introduced such that (i) the boundary of each CE can
be divided into several component parts with each of them belonging to a unique SE; and (ii) within a SE,
any physical flux vector is approximated using simple smooth functions. In general, a CE does not coincide
with a SE.

Without using flux-splitting or other special techniques, since its inception [1] the unstructured-mesh
compatible CE/SE method has been used to obtain numerous accurate 1D, 2D and 3D steady and unsteady
flow solutions with Mach numbers ranging from 0.0028 to 10 [42]. The phyical phenomena modeled include
traveling and interacting shocks, acoustic waves, shedding vortices, viscous flows, detonation waves, cavi-
tation, flows in fluid film bearings, heat conduction with melting and/or freezing, electrodynamics, MHD
vortex, hydraulic jump, crystal growth, and chromatographic problems [2–58]. In particular, the rather
unique capability of the CE/SE method to resolve both strong shocks and small disturbances (e.g., acoustic
waves) simultaneously [11,13,14] makes it an effective tool for attacking computational aeroacoustics (CAA)
problems. Note that the fact that second-order CE/SE schemes can solve CAA problems accurately is an
exception to the commonly-held belief that a second-order scheme is not adequate for solving CAA problems.
Also note that, while numerical dissipation is needed for shock capturing, it may also result in annihilation of
small disturbances. Thus a solver that can handle both strong shocks and small disturbances simultaneously
must be able to overcome this difficulty.

In spite of its past successes, there is still room for improving the CE/SE method. An example is
the fact that, in a CE/SE simulation with a fixed total marching time, generally the numerical dissipation
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increases as the value of the Courant number decreases from 1, its maximum stability bound. As such, in a
case with a large Courant number disparity (e.g., a simulation with a highly non-uniform spatial mesh and a
spatially independent time step), the performance sensitivity with respect to the Courant number can lead
to a solution that is highly dissipative in a region where the local Courant number � 1. Another example
is the fact that a CE/SE solution may become overly dissipative when Mach number is very small.

By using the fact that each CE/SE scheme is built from a non-dissipative core scheme, robust one-
dimensional and multidimensional Courant number insensitive schemes were described in [50,52]. As a follow-
up, new one-dimensional Courant number and Mach number insensitive CE/SE Euler solvers have been
developed using several key concepts underlying the development of Courant number insensitive schemes.
Numerical results indicate that the new solvers are capable of resolving crisply a contact discontinuity
embeded in a flow with the maxmum Mach number = 0.01. The rest of the paper is organized as follows.
A review of the existing CE/SE schemes is given in Secs. 2–4. The new Courant number and Mach number
insensitive schemes are described in Sec. 5. Numerical results are presented in Sec. 6. Conclusions and
discussions are given in Sec. 7.

2. Review of the basic 1D CE/SE method

For simplicity, we review the existing CE/SE schemes for the PDE

∂u

∂t
+ a

∂u

∂x
= 0 (2.1)

where a 6= 0 is a constant. Let x1 = x, and x2 = t be considered as the coordinates of a two-dimensional Eu-

clidean space E2. Then, because Eq. (2.1) can be expressed as ∇·~h = 0 with ~h
def
= (au, u), Gauss’ divergence

theorem in the space-time E2 implies that Eq. (2.1) is the differential form of the integral conservation law

∮

S(V )

~h · d~s = 0 (2.2)

As depicted in Fig. 1, here (i) S(V ) is the boundary of an arbitrary space-time region V in E2, and (ii)
d~s = dσ ~n with dσ and ~n, respectively, being the area and the unit outward normal of a surface element
on S(V ). Note that: (i) because ~h · d~s is the space-time flux of ~h leaving the region V through the surface

element d~s, Eq. (2.2) simply states that the total space-time flux of ~h leaving V through S(V ) vanishes;
(ii) in E2, dσ is the length of a line segment on the simple closed curve S(V ); and (iii) all mathematical
operations can be carried out as though E2 were an ordinary two-dimensional Euclidean space.

To proceed, let Ω denote the set of all space-time staggered mesh points in E2 (dots in Fig. 2(a)), where
n = 0,±1/2,±1,±3/2,±2, . . ., and, for each n, j = n±1/2, n±3/2, n±5/2, . . .. Each (j, n) ∈ Ω is associated
with a solution element, i.e., SE(j, n). By definition, SE(j, n) is the interior of the space-time region bounded
by a dashed curve depicted in Fig. 2(b). It includes a horizontal line segment, a vertical line segment, and
their immediate neighborhood.

Let (x, t) ∈ SE(j, n). Then Eq. (2.2) will be simulated numerically assuming that u(x, t) and ~h(x, t),
respectively, are approximated by

u∗(x, t ; j, n)
def
= un

j + (ux)n
j (x − xj) + (ut)

n
j (t − tn) (2.3)

and
~h∗(x, t ; j, n)

def
=
(

au∗(x, t ; j, n), u∗(x, t ; j, n)
)

(2.4)

Note that (i) un
j , (ux)n

j , and (ut)
n
j are constants in SE(j, n), (ii) (xj , t

n) are the coordinates of the mesh point

(j, n) with xj = j∆x and tn = n∆t, and (iii) Eq. (2.4) is the numerical analogue of the definition ~h = (au, u).
Let u = u∗(x, t ; j, n) satisfy Eq. (2.1) within SE(j, n). Then one has (ut)

n
j = −a (ux)n

j . As a result,
Eq. (2.3) reduces to

u∗(x, t ; j, n) = un
j + (ux)n

j

[

(x − xj) − a (t − tn)
]

(2.5)
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i.e., un
j and (ux)n

j are the only independent marching variables associated with (j, n).
Let E2 be divided into nonoverlapping rectangular regions (see Fig. 2(a)). As depicted in Figs. 2(c)–2(e),

(i) two such regions, i.e., CE−(j, n) and CE+(j, n), are associated with each interior mesh point (j, n) ∈ Ω;
and (ii) CE(j, n) is the union of CE−(j, n) and CE+(j, n).

Given the above preliminaries, we are ready to describe the existing CE/SE solvers for Eq. (2.1).

2.1. The a scheme

Note that, among the line segments forming the boundary of CE−(j, n), AB and AD belong to SE(j, n),
while CB and CD belong to SE(j − 1/2, n − 1/2). Similarly, the boundary of CE+(j, n) belongs to either
SE(j, n) or SE(j + 1/2, n − 1/2). As a result, by imposing two conservation conditions at each (j, n) ∈ Ω,
i.e.,

∮

S(CE+(j,n))

~h∗ · d~s = 0 and

∮

S(CE−(j,n))

~h∗ · d~s = 0, (j, n) ∈ Ω (2.6)

and using Eqs. (2.4) and (2.5), one can obtain two equations for the two unknowns un
j and (ux)n

j . In fact,

let (i) ν
def
= a∆t/∆x, and (ii) for any (j, n) ∈ Ω,

(ux̄)n
j

def
=

∆x

4
(ux)n

j (2.7)

then Eq. (2.6) implies that (i)

un
j =

1

2

{

(1 + ν)u
n−1/2
j−1/2 + (1 − ν)u

n−1/2
j+1/2 + (1 − ν2)

[

(ux̄)
n−1/2
j−1/2 − (ux̄)

n−1/2
j+1/2

]}

(2.8)

and, assuming |ν| 6= 1, (ii)
(ux̄)n

j = (ua
x̄)n

j (|ν| 6= 1) (2.9)

with

(ua
x̄)n

j
def
=

1

2

[

u
n−1/2
j+1/2 − u

n−1/2
j−1/2 − (1 + ν)(ux̄)

n−1/2
j+1/2 − (1 − ν)(ux̄)

n−1/2
j−1/2

]

(|ν| 6= 1) (2.10)

The a scheme, i.e., the inviscid case of the a-µ scheme [1,3,9], is formed by Eqs. (2.8) and (2.9). Note that,
because

∂u

∂x̄
=

∆x

4

∂u

∂x

if x̄
def
= x/(∆x/4), the normalized parameter (ux̄)n

j may be interpreted as the value at (j, n) of the derivative
of u with respective to the normalized coordinate x̄. Also note that the superscript symbol “a” in the
parameter (ua

x̄)n
j is introduced to remind the reader that Eq. (2.9) is valid for the a scheme.

The review of the a scheme is concluded with the following remarks:
(a) Even though it is introduced to model a single PDE (i.e., Eq. (2.1)) with a single dependent variable

u, the a scheme is formed by two coupled discrete equations (i.e., Eqs. (2.8) and (2.9)) involving two
independent numerical variables un

j and (ux)n
j . It is shown in [1] that Eqs. (2.8) and (2.9) are consistent

with a pair of PDEs with one of them being Eq. (2.1).
(b) The a scheme has the simplest stencil, i.e., a triangle with a vertex at the upper time level and the other

two vertices at the lower time level. Furthermore, the number of the independent marching variables
associated with a mesh point (j, n) ∈ Ω is equal to the number of the mesh points at the (n − 1/2)th
time level that are part of the stencil. Note that the same relation also holds for many 2D and 3D
CE/SE schemes [7,8,41].

(c) As shown in [3], the two amplification factors of the a scheme are identical to those of the leapfrog
scheme. As a result, the a scheme is non-dissipative and it is stable if |ν| < 1 (see the additional
discussions given in Sec. 2.2).

(d) Note that derivation of Eqs. (2.8) and (2.9) can be facilitated by the following observations: because

u∗(x, t ; j, n) is linear in x and t, it can be shown that the total flux of ~h∗ leaving CE−(j, n) or CE+(j, n)
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through any of the four line segments that form its boundary is equal to the scalar product of the vector
~h∗ evaluated at the midpoint of the line segment and the “surface” vector (i.e., the unit outward normal
multiplied by the length) of the line segment.

(e) Because, for any (j, n) ∈ Ω, the total flux of ~h∗ leaving each of CE−(j, n) and CE+(j, n) vanishes (see
Eq. (2.6)), CE−(j, n) and CE+(j, n), (j, n) ∈ Ω, will be referred to as the conservation elements (CEs)

of the a scheme. In addition, because (i) the vector ~h∗ at any surface element lying on any interface
separating two neighboring CEs is evaluated using the information from a single SE, and (ii) the unit
outward normal vector on the surface element pointing outward from one of these two neighboring CEs
is exactly the negative of that pointing outward from another CE, one concludes that the flux leaving one
of these CEs through the interface is the negative of that leaving another CE through the same interface.
As a result, the local conservation relations Eq. (2.6) lead to a global flux conservation relation, i.e., the

total flux of ~h∗ leaving the boundary of any space-time region that is the union of any combination of
CEs will also vanish. In particular, because CE(j, n) is the union of CE−(j, n) and CE+(j, n),

∮

S(CE(j,n))

~h∗ · d~s = 0, (j, n) ∈ Ω (2.11)

must follow from Eq. (2.6). In fact, it can be shown that Eq. (2.11) is equivalent to Eq. (2.8).
(f) In addition to the non-dissipative a scheme, as will be shown, there is a family of its dissipative extensions

in which only the less stringent conservation condition Eq. (2.11) is assumed [3]. Because Eq. (2.11) is
equivalent to Eq. (2.8), for each of these extensions, un

j is still evaluated using Eq. (2.8) while (ux̄)n
j is

evaluated using an equation different from Eq. (2.9).

2.2. The a-ε scheme and the c scheme

To proceed, consider any (j, n) ∈ Ω. Then (j ± 1/2, n− 1/2) ∈ Ω. Let

u′n
j±1/2

def
= u

n−1/2
j±1/2 + (∆t/2)(ut)

n−1/2
j±1/2 (2.12)

With the aid of Eq. (2.7) and the fact that the Courant number ν
def
= a∆t/∆x, a substitution of the relation

(ut)
n
j = −a(ux)n

j into Eq. (2.12) results in

u′n
j±1/2 = (u − 2ν ux̄)

n−1/2
j±1/2 (2.13)

Note that, to simplify notation, in the above and hereafter we adopt a convention that can be explained
using the expression on the right side of Eq. (2.13) as an example, i.e.,

(u − 2ν ux̄)
n−1/2
j±1/2 = u

n−1/2
j±1/2 − 2ν(ux̄)

n−1/2
j±1/2

Also note that, by definition, (j ± 1/2, n) /∈ Ω if (j, n) ∈ Ω. Thus u′n
j±1/2 is associated with a mesh point

/∈ Ω. The reader is warned that similar situations may occur in the rest of this paper.
According to Eq. (2.12), u′n

j±1/2 can be interpreted as a first-order Taylor’s approximation of u at

(j ± 1/2, n). Thus

(uc
x̄)n

j
def
=

∆x

4

(

u′n
j+1/2 − u′n

j−1/2

∆x

)

(2.14)

is a central-difference approximation of ∂u/∂x̄ at (j, n). Note that: (i) the superscript “c” is used to remind
the reader of the central-difference nature of the term (uc

x̄)n
j ; and (ii) by using Eqs. (2.13), (2.14) and (2.10),

one has

(uc
x̄)n

j =
1

4

[

(u − 2νux̄)
n−1/2
j+1/2 − (u − 2νux̄)

n−1/2
j−1/2

]

(2.15)
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and

(uc
x̄ − ua

x̄)n
j =

1

2

[

(ux̄)
n−1/2
j+1/2 + (ux̄)

n−1/2
j−1/2

]

− 1

4

(

u
n−1/2
j+1/2 − u

n−1/2
j−1/2

)

(2.16)

The a-ε scheme is formed by Eq. (2.8) and

(ux̄)n
j = (ua

x̄)n
j + 2ε(uc

x̄ − ua
x̄)n

j (2.17)

where ε is a real number. Obviously the a-ε scheme reduces to the a scheme when ε = 0. Also, for the case
ε = 1/2, Eq. (2.17) reduces to

(ux̄)n
j = (uc

x̄)n
j (2.18)

Because (uc
x̄)n

j represents a central-difference approximation, hereafter, to simplify its frequent references,
the special a-ε scheme with ε = 1/2 will be referred to as the c scheme.

To proceed, several key remarks about the a-ε scheme are presented:
(a) At each mesh point (j, n) ∈ Ω, Eqs. (2.8) and (2.9) are the results of Eq. (2.6). Because Eq. (2.17) does

not reduce to Eq. (2.9) except in the special case ε = 0, at each mesh point (j, n) ∈ Ω, generally the
a-ε scheme satisfies only the single conservation condition Eq. (2.11) (which is equivalent to Eq. (2.8))
rather than the two consevation conditions Eq. (2.6). However, because (ua

x̄)n
j generally is present on

the right side of Eq. (2.17), the a-ε scheme generally will still be burdened with the cost of solving two
conservation conditions at each mesh point. The exception occurs only for the special case ε = 1/2
(i.e., the c scheme) in which Eq. (2.17) reduces to Eq. (2.18). As it turns out, implementation of
a multidimensional Euler version of the c scheme does not require inverting any system of equations
while a similar implementation involving a version of any other a-ε scheme (ε 6= 1/2) generally requires
inverting, per mesh point and per time step, a system of several linear equations (to be exact, a system
of eight and fifteen equations, respectively, for 2D and 3D Euler equations) [7,8,41]. As such, it is much
more cost effective to use a multidimensional Euler version of the c scheme than using that of any other
a-ε scheme. Partly for this reason, extensions of the c scheme have been used extensively.

(b) For the a-ε scheme, it is shown in [3] that the principal and spurious amplification factors per ∆t,
respectively, are (λ+)2 and (λ−)2 with

λ±(ε, ν, θ)
def
= ε cos(θ/2) − iν sin(θ/2) ±

√

(1 − ε)
[

(1 − ε)cos2(θ/2) + (1 − ν2)sin2(θ/2)
]

(2.19)

Here (i) i
def
=

√
−1, and (ii) θ, −π < θ ≤ π, is the phase angle variation per ∆x. In addition, it is shown

that (i) the necessary and sufficient conditions for the stability of the a-ε scheme are

0 ≤ ε ≤ 1, and |ν| < 1 (2.20)

and (ii) the a-ε scheme becomes progressively diffusive as the value of ε increases from 0 to 1. Note
that, unless specified otherwise, in the remainder of the paper the ranges of ε, ν and θ, respectively, are
defined by Eq. (2.20) and −π < θ ≤ π.

(c) Let k be a constant. Then u = eik(x−at) represents a plane wave solution to Eq. (2.1). For this solution

the exact amplification factor per ∆t

def
=

eik[x−a(t+∆t)]

eik(x−at)
= e−ika∆t = e−iνθ (2.21)

where θ = k∆x.
(d) According to Eq. (2.19), [λ±(0, ν, θ)]2, the amplification factors of the a scheme (which corresponds to

the case ε = 0) per ∆t, have the following properties:

|[λ±(0, ν, θ)]2| = 1 (2.22)
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lim
ν→±1

[λ+(0, ν, θ)]2 = e∓iθ (2.23)

lim
ν→±1

[λ−(0, ν, θ)]2 = e±iθ (2.24)

and
[λ±(0, 0, θ)]2 = 1 (2.25)

On the other hand, e−iνθ, the exact amplification factor per ∆t, has the following properties:

|e−iνθ| = 1 (2.26)

lim
ν→±1

e−iνθ = e∓iθ (2.27)

and
e−iνθ = 1 if ν = 0 (2.28)

For the a scheme, Eqs. (2.22)–(2.28) imply that: (i) the two amplification factor of the scheme, and
the exact amplification factor all have the same constant absolute value (= 1) and, thus, the scheme is
non-dissipative; (ii) in the limit of |ν| → 1 (i.e., ν → 1 or ν → −1), the principal amplification factor is
identical to the exact amplification factor and, thus, the former has no dissipative or dispersive error in
this limit; (iii) also in the limit of |ν| → 1, the phase angle associated with the spurious amplification
factor is exactly the negative of that associated with the exact amplification factor and, thus, the
spurious amplification factor has a large dispersive error in this limit except when |θ| � 1(i.e., when
the wavelengths of the errors � 1); and (iv) when ν = 0, the two amplification factors of the scheme,
and the exact amplification factor are all equal to 1 and, thus, the two amplification factors of the
scheme have no dissipative or dispersive error if ν = 0. Because the accuracy of a scheme is essentially
hinged on the behaviors of the principal amplification factor [1], according to the facts stated above,
the a scheme tends to become very accurate when |ν| approaches 1 or 0. However, the short-wavelength
errors associated with the spurious amplification factor (which could be introduced at t = 0 as a result of
an inaccurate initial-value specification [1]) may appear in a solution as persistent (i.e., non-dissipative)
numerical wiggles when |ν| approaches 1 [1,9].

(e) According to Eq. (2.19), [λ±(1/2, ν, θ)]2, the amplification factors of the c scheme (which corresponds
to the case ε = 1/2) per ∆t, have the following properties:

lim
ν→±1

[λ+(1/2, ν, θ)]2 = e∓iθ (2.29)

lim
ν→±1

[λ−(1/2, ν, θ)]2 = − sin2(θ/2) (2.30)

and

[λ±(1/2, 0, θ)]2 =
1

2

[

1 ± cos(θ/2)
√

2 − cos2(θ/2)
]

(2.31)

For the c scheme, Eqs. (2.27)–(2.31) imply that: (i) in the limit of |ν| → 1, the principal amplification
factor is identical to the exact amplification factor and, thus, the former has no dissipative or dispersive
errors in this limit; (ii) also in the limit of |ν| → 1, the spurious amplification factor has large dissipative
and dispersive errors; and (iii) when ν = 0, both the principal and spurious amplification factors
generally have large dissipative errors but no dispersive errors. According to the facts stated above, like
the a scheme, the c scheme also tends to become very accurate when |ν| approaches 1. However, unlike
the a scheme, the errors associated with the spurious amplification factor of the c scheme generally do
die out rapidly when |ν| approaches 1. Also, in sharp contrast to the a scheme, the c scheme becomes
highly dissipative when ν approaches 0.

From the above discussions, one concludes that:
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(a) The advantages of the a scheme include: (i) it is non-dissipative throughout the range of ε and ν defined
in Eq. (2.20); and (ii) when the value of |ν| is close to 0 or 1, the scheme is very accurate. On the other
hand, its disadvantages include: (i) because it is non-dissipative, its extensions for nonlinear equations
generally are unstable; (ii) when the value of |ν| is close to 1, the short-wavelength errors associated
with the spurious amplification factors will not die out rapidly and, therefore, appear in a solution as
persistent numerical wiggles; and (iii) comparing with the c scheme, it costs more to implement.

(b) The advantages of the c scheme include: (i) when the value of |ν| is close to 1, it is very accurate and
the short-wavelength errors associated with the spurious amplification factor also die out rapidly; (ii)
because it is dissipative, its extensions for nonlinear equations generally are stable; and (iii) in terms of
ease of implementation and computer cost, it is much more superior than any other a-ε scheme. On the
other hand, the c scheme has a serious disadvantage, i.e., it is very dissipative when ν approaches 0.

In Sec. 3, it will be shown that new solvers of Eq. (2.1) can indeed be constructed such that they possess all
the advantages but none of the disadvantages listed above. Specifically, each of these solvers will be formed
by Eq. (2.8) and a new equation in which (ux̄)n

j is evaluted using a simple central-differencing procedure
similar to that used to obtain (uc

x̄)n
j . In addition, (ux̄)n

j so obtained will be (i) identical to (uc
x̄)n

j in the limit
of |ν| → 1, and (ii) identical to (ua

x̄)n
j when ν = 0. As such, each of these new solvers (i) is comparable to

the c scheme in ease of implementation; (ii) becomes the c scheme in the limit of |ν| → 1; and (iii) becomes
the a scheme when ν = 0.

2.3. The w-α scheme—a special wiggle-suppressing scheme

If discontinuities are present in a numerical solution, any a-ε scheme such as the c scheme is not equipped
to suppress numerical wiggles that generally appear near these discontinuities. To serve as a preliminary
for future development, here we shall briefly review an extension of the c scheme which was introduced as a
remedy for this deficiency [3,35].

To proceed, let

(ux̄−)n
j

def
=

∆x

4

(

un
j − u′n

j−1/2

∆x/2

)

(2.32)

and

(ux̄+)n
j

def
=

∆x

4

(

u′n
j+1/2 − un

j

∆x/2

)

(2.33)

i.e., (ux̄−)n
j and (ux̄+)n

j are numerical analogues of ∂u/∂x̄ at (j, n) evaluated from the left and the right,
respectively. It can be shown that

(uc
x̄)n

j =
1

2
(ux̄− + ux̄+)

n
j (2.34)

i.e., (uc
x̄)n

j is the simple average of (ux̄−)n
j and (ux̄+)n

j . As such, the c scheme can be extended by replacing
(uc

x̄)n
j in Eq. (2.18) with an weighted average of (ux̄−)n

j and (ux̄+)n
j . In other words, the resulting extension

is formed by Eq. (2.8) and
(ux̄)n

j = (w−)n
j (ux̄−)n

j + (w+)n
j (ux̄+)n

j (2.35)

where (w−)n
j and (w+)n

j , the weight factors associated with (ux̄−)n
j and (ux̄+)n

j respectively, must satisfy the
condition

(w−)n
j + (w+)n

j = 1 (2.36)

at all (j, n) ∈ Ω. In addition, the expression on the right side of Eq. (2.35) represents an interpolation (rather
than an extrapolation) of (ux̄−)n

j and (ux̄+)n
j if and only if

(w−)n
j ≥ 0 and (w+)n

j ≥ 0 (2.37)

For real variables x−, x+, and α ≥ 0, let W− and W+ be the functions defined by: (i) W−(x−, x+; α) =
W+(x−, x+; α) = 1/2 if x− = x+ = 0; and (ii)

W−(x−, x+; α) =
|x+|α

|x−|α + |x+|α
and W+(x−, x+; α) =

|x−|α
|x−|α + |x+|α

(2.38)
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if either x− 6= 0 or x+ 6= 0. Furthermore, let

(w±)n
j = W±((ux̄−)n

j , (ux̄+)n
j , α) (2.39)

Then (w−)n
j and (w+)n

j so defined satisfy Eqs. (2.36) and (2.37) and have the property that

(w−)n
j = (w+)n

j = 1/2 if α = 0 or |(ux̄−)n
j | = |(ux̄+)n

j | (2.40)

Note that: (i) to avoid dividing by zero, in practice a small positive number such as 10−20 is added to each
of the denominators in Eq. (2.38); and (ii) the special cases of Eq. (2.38) with α = 1 and α = 2 are used in
the slope-limiter proposed by van Leer [59], and van Albada et al. [60].

An extension of the c scheme is formed by Eqs. (2.8) and (2.35) with (w−)n
j and (w+)n

j being defined
by Eq. (2.39). Because it involves an weighted average which is dependent on a parameter α, hereafter the
scheme is referred to as the w-α scheme. Let α > 0 and |(ux̄−)n

j | 6= |(ux̄+)n
j |. Then Eq. (2.38) implies that,

of (ux̄−)n
j and (ux̄+)n

j , the one with smaller absolute value is associated with an weight factor > 1/2. This
observation coupled with Eqs. (2.34)–(2.37) leads to the conclusion that, of (ux̄−)n

j and (ux̄+)n
j , (ux̄)n

j will
have an algebraic value closer to the one with smaller absolute value if (ux̄)n

j is evaluated as an weighted
average of (ux̄−)n

j and (ux̄+)n
j according to Eq. (2.35). As a result, (ux̄)n

j so evaluated has a smaller absolute
value than that evaluated using Eq. (2.18). In turn, numerical wiggles or overshoots can be annihilated by
the additional numerical dissipation introduced as a result of this local “flattening” of (ux̄)n

j . It has been
shown numerically that the extension is stable if |ν| < 1 and α ≥ 0. Moreover, as a result of Eqs. (2.18),
(2.34), (2.35) and (2.40), (i) the extension reduces to the c scheme when α = 0; and (ii) even if α > 0,
the extension behaves very much like the c scheme in any smooth solution region (where the condition
(ux̄−)n

j = (ux̄+)n
j more or less prevails) or at a solution extremum (where the condition (ux̄−)n

j = −(ux̄+)n
j

more or less prevails). As such, the wiggle-suppressing power of the extension takes effect only if α > 0 and
only in a solution region where |(ux̄−)n

j | and |(ux̄+)n
j | differ substantially .

3. The c-τ and c-τ∗ schemes

In this section, the ideal solvers of Eq. (2.1) mentioned at the end of Sec. 2.2 will be constructed. As a
preliminary, we shall show that (ua

x̄)n
j can also be cast into a central-difference form when ν = 0.

To proceed, note that by assumption a 6= 0. Thus ν = 0 if and only if ∆t = 0. Because |EF | = |AD| =
|CB| = 0 (see Figs. 2(c,d)) when ∆t = 0, the two conservation conditions given in Eq. (2.6) for the case
ν = 0, respectively reduce to the following conditions: (i) the flux leaving CE+(j, n) through the top face
AF is equal to that entering the same CE through the bottom face ED; and (ii) the flux leaving CE−(j, n)
through the top face AB is equal to that entering the same CE through the bottom face CD. According
to Remark (d) given at the end of Sec. 2.1, the flux leaving CE+(j, n) through the top face AF is equal to
the value of u∗ at the midpoint of AF (evaluated using the marching variables at point A) multiplied by
|AF |, while that entering it through the bottom face ED is equal to the value of u∗ at the midpoint of ED
(evaluated using the marching variables at point E) multiplied by |ED|. With the aid of these observations
and the fact that |AF | = |ED|, the above condition (i) implies that, when ν = 0, the value of u∗ at the
midpoint of AF evaluated using the marching variables at point A is equal to that at the midpoint of ED
evaluated using the marching variables at point E. As such, the first conservation condition in Eq. (2.6) is
equivalent to

(u + ux̄)
n
j = (u − ux̄)

n−1/2
j+1/2 (ν = 0) (3.1)

if ν = 0. Similarly, by using the above condition (ii), it can be shown that the second conservation condition
in Eq. (2.6) is equivalent to

(u − ux̄)
n
j = (u + ux̄)

n−1/2
j−1/2 (ν = 0) (3.2)

if ν = 0. Because Eqs. (2.8) and (2.9) (which form the a scheme) are equivalent to Eq. (2.6) if |ν| 6= 1, they
must be equivalent to Eqs. (3.1) and (3.2) when ν = 0. In fact, by substracting Eq. (3.2) from Eq. (3.1), one
obtains Eq. (2.9) where (ua

x̄)n
j is the reduced form of Eq. (2.10) for the case ν = 0, i.e.,

(ua
x̄)n

j =
1

2

[

(u − ux̄)
n−1/2
j+1/2 − (u + ux̄)

n−1/2
j−1/2

]

(ν = 0) (3.3)
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Moreover, by summing over Eqs. (3.1) and (3.2), one has the reduced form of Eq. (2.8) for the case ν = 0.

With the aid of Eq. (3.3) and the facts that: (i) (u−ux̄)
n−1/2
j+1/2 and (u+ux̄)

n−1/2
j−1/2 , respectively, represent

an approximation of u at the midpoint of ED and that at the midpoint of CD (see Fig. 2(c,d)); and (ii)
the distance between the two midpoints referred to above is ∆x/2, it becomes obvious that, for the special
case ν = 0, (ua

x̄)n
j is indeed a central-difference approximation of ∂u/∂x̄ at (j, n− 1/2) (which coincides with

(j, n) when ν = 0). QED

According to the above discussions, construction of the ideal solvers defined at the end of Sec. 2.2 is
hinged on finding central-difference approximations for (ux̄)n

j such that each approximation (i) becomes
(uc

x̄)n
j in the limit of |ν| → 1, and (ii) reduces to the expression on the right side of Eq. (3.3) when ν = 0.

As a result of these observations, these new solvers can easily be constructed as the subschemes of the c-τ
scheme, a new class of CE/SE solvers for Eq. (2.1) to be described immediately.

3.1. The c-τ scheme

To proceed, refer to Fig. 3. Here M+ and M− denote the midpoints of AF and AB, respectively. Also
P+ and P− are two points on BF that satisfy the following conditions: (i) P + coincides with M+ if and
only if P− coincides with M−; (ii) P+ is to the right (left) of M+ if and only if P− is to the left (right)
of M−; and (iii) |M+P+| = |M−P−|, i.e., M+P+ and M−P− have the same length. In addition, let the
parameter τ be defined by: (i) τ = 0 if P + coincides with M+; (ii) τ ∆x/4 = |M+P+| if P+ is to the
right of M+; and (iii) τ ∆x/4 = −|M+P+| if P+ is to the left of M+. Obviously, it follows from the above
definitions that (i) τ = 0 if P− coincides with M−; (ii) τ ∆x/4 = |M−P−| if P− is to the left of M−; and
(iii) τ ∆x/4 = −|M−P−| if P− is to the right of M−.

Moreover, let

u(P+)
def
= [u + (∆t/2)ut − (1 − τ)ux̄]

n−1/2
j+1/2 (3.4)

and

u(P−)
def
= [u + (∆t/2)ut + (1 − τ)ux̄]

n−1/2
j−1/2 (3.5)

With the aid of Eq. (2.7), it is seen that u(P +) is a first-order Taylor’s approximation of u at P + evaluated
using the marching variables at point E, while u(P−) is a first-order Taylor’s approximation of u at P−

evaluated using the marching variables at point C. Also note that, by using the relation (ut)
n
j = −a(ux)n

j ,
Eqs. (3.4) and (3.5), respectively, can be simplified as

u(P+) = [u − (2ν + 1 − τ)ux̄]
n−1/2
j+1/2 (3.6)

and

u(P−) = [u − (2ν − 1 + τ)ux̄]
n−1/2
j−1/2 (3.7)

At this juncture, note that P + and P− generally lie outside of SE(j+1/2, n−1/2) and SE(j−1/2, n−1/2),
respectively. Yet here, by definition, u(P +) and u(P−) are evaluated as though P + and P− lie within
(j +1/2, n−1/2) and (j−1/2, n−1/2), respectively. At first glance, the current practice is inconsistent with
a previously established rule. However, as explained by the reasons given below, the definition of u(P +) and
u(P−) is perfectly legitimate:

(a) Recall that solution elements were introduced such that the boundary of a CE can be divided into
several component parts with each of them belonging to a unique solution element. As such, the flux
over a component part that belongs to a special solution element, say SE(j, n), can be unambiguously
determined in terms of the marching variables at the mesh point (j, n). In other words, in related to
evaluation of any flux conservation condition over any CE, Eqs. (2.3)–(2.5) can be applied only to a
point (x, t) ∈ SE(j, n).

(b) On the other hand, u(P +) and u(P−) introduced here have nothing to do with flux evaluation. In fact,
they will be used only in the construction of some numerical analogues of ∂u/∂x at (j, n).
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To proceed, note that: (i) the mesh point (j, n) (i.e., point A depicted in Fig. 3) is the midpoint of
P−P+, and (ii) |P−P+| = (1 + τ)∆x/2. Thus

(ûx̄)n
j

def
=

∆x

4

(

u(P+) − u(P−)

(1 + τ)∆x/2

)

(τ 6= −1) (3.8)

represents a central-difference approximation of ∂u/∂x̄ at the mesh point (j, n). Thus the new scheme formed
by Eq. (2.8) and

(ux̄)n
j = (ûx̄)n

j (3.9)

represents a solver for Eq. (2.1). Because (i) (ûx̄)n
j represents a central-difference approximation of (ux̄)n

j ,
and (ii) the approximation is associated with the parameter τ , hereafter the new scheme will be referred to
as the c-τ scheme.

To explore the c-τ scheme, note that Eqs. (3.6)–(3.8) can be combined to yield

(ûx̄)n
j =

1

2(1 + τ)

{

[u − (2ν + 1 − τ)ux̄]
n−1/2
j+1/2 − [u − (2ν − 1 + τ)ux̄]

n−1/2
j−1/2

}

(τ 6= −1) (3.10)

Moreover, by using Eqs. (2.10), (2.16) and (3.10), one has

(ûx̄)n
j = (ua

x̄)n
j +

2τ

1 + τ
(uc

x̄ − ua
x̄)n

j − ν(1 − τ)

2(1 + τ)

[

(ux̄)
n−1/2
j+1/2 − (ux̄)

n−1/2
j−1/2

]

(3.11)

By comparing Eq. (3.11) with (2.17), one concludes that the c-τ scheme generally is different from the a-ε
scheme. In fact, a special case of the c-τ scheme can be turned into that of the a-ε scheme and vice versa if
and only if either (i) τ = 1 or (ii) ν = 0. For the case τ = 1, Eq. (3.11) implies that (ûx̄)n

j = (uc
x̄)n

j . In other
words, the c scheme is the special case of the c-τ scheme with τ = 1, a fact that can also be deduced from
the observation that the points P + and P− depicted in Fig. 3, respectively, coincide with points F and B
(i.e., the mesh points (j + 1/2, n) and (j − 1/2, n)) if τ = 1. On the other hand, it is seen that, when ν = 0,
the c-τ scheme become the a-ε scheme with ε = 2τ/(1 + τ). In fact one can further deduce that c-τ scheme
reduces to the a scheme if and only if ν = τ = 0.

Because the c-τ scheme is formed by two rather complicated equations (i.e., Eqs. (2.8) and (3.9))
involving two parameters ν and τ , it were not expected that its von Neumann stability conditions could
be cast into an explicit analytical form. However, it is shown rigorously in [55] that the c-τ scheme is von
Neumann stable if and only if

ν2 ≤ 1, τ ≥ τo(ν
2), and (ν2, τ) 6= (1, 1) (3.12)

where

τo(s)
def
=































0 if s = 0

4 − s − 2
√

2(2 − s − s2)

s
if 0 < s ≤ 3

11

s − 1 +
√

1 − 2s + 5s2

2s
if 3

11 ≤ s ≤ 1

(3.13)

Note that:
(a) It can be shown that [55]: (i) τo(s) is continuous at s = 0; (ii) τo(s) is consistently defined at s = 3/11;

(iii)
lim

s→ 3
11

−

τ ′
o(s) = lim

s→ 3
11

+
τ ′
o(s) = 121/90

where τ ′
o(s)

def
= dτo(s)/ds; (iv) τo(s) is strictly montonically increasing in the interval 0 < s < 1; (v)

τo(1) = 1; and (vi)
s < τo(s) <

√
s, 0 < s < 1 (3.14)
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(b) For any given fixed value of |ν| < 1, the c-τ scheme tends to become more dissipative as the value of τ
increases from τo(ν

2), its minimum stable value.
(c) The function τo defined here is different from the function τo defined in [52]. In fact, for any ν ∈ [0, 1],

the value of τo(ν
2) defined here is identical to that of τo(|ν|) defined in [52]. Because the analytical

ν-τo(ν
2) relation depicted in Fig. 4 here is virtually identical to the numerical ν-τ(|ν|) relation depicted

in Fig. 4 of [52], the analytical stability conditions given here are in complete agreement with those
generated numerically and stated in Eq. (3.12) of [52].

With the above preliminaries, the ideal solvers of Eq. (2.1) defined at the end of Sec. 2.2 will be
constructed in Sec. 3.2.

3.2. The c-τ∗ schemes

The value of τ used in the c-τ scheme generally can be chosen independent of ν. Here we will introduce
a subset of the c-τ scheme in which τ is a function of ν2 for each member of this subset. As a preliminary,
note that, by using the properties of τo(s) presented earlier, it can be shown that there exist infinitely many
choices of a strictly monotonically increasing smooth function h(s), 0 ≤ s < 1, which possesses the following
properties:

h(0) = 0; lim
s→1−

h(s) = 1; and h(s) ≥ τo(s) if 0 < s < 1 (3.15)

For each function h(s) that satisfies the above conditions, each member of the subset referred to earlier is
defined using the relation

τ = h(ν2) (ν2 < 1) (3.16)

Note that, using the definition of h and Eq. (3.16), one can easily infer from Fig. 3 a simple relation between
the value of ν2 and the locations of P + and P−, i.e., as the value of ν2 increases from 0 to 1, P + will move
away from M+ and edge toward the mesh point (j + 1/2, n) while P− will move away from point M− and
edge toward the mesh point (j − 1/2, n). Also note that, by using the above preliminaries, one can show
that: (i)

τ = 0 if ν = 0 (3.17)

(ii)
lim

ν2→1−

τ = 1 (3.18)

and (iii)
τ ≥ τo(ν

2) (ν2 < 1) (3.19)

Recall that (i) (ûx̄)n
j = (ua

x̄)n
j if τ = ν = 0; and (ii) (ûx̄)n

j = (uc
x̄)n

j if τ = 1. As such, Eqs. (3.17) and
(3.18) imply that, for each member in the subset, (i) (ûx̄)n

j = (ua
x̄)n

j if ν = 0; and (ii) (ûx̄)n
j = (uc

x̄)n
j in

the limit of ν2 → 1−. In other words, all members in the subset are ideal solvers in the domain ν2 < 1.
Moreover, by using Eq. (3.12) and (3.19), one can also show that these ideal solvers are also stable in the
same domain. Hereafter, each of these ideal solvers will be referred to as an ideal c-τ ∗ scheme.

Corresponding to infinitely many choices of h, there are infinitely many different ideal c-τ ∗ schemes. In
particular, because

h(s) =
√

s (0 ≤ s < 1) (3.20)

is a legitimate choice (see Eq. (3.14)), Eq. (3.16) implies that an ideal c-τ ∗ scheme can be defined using the
relation

τ = |ν| (ν2 < 1) (3.21)

Any ideal c-τ∗ scheme described above meets all the requirements of an ideal solver defined in Sec. 2.2.
However, because of stability problem, an ideal c-τ ∗ scheme and its multidimensional extensions may not
be robust enough for some complicated real-world applications. To overcome this difficulty, we introduce a
special c-τ scheme which is defined by Eqs. (2.8), (3.9), and (3.10) with

τ = β |ν| (β ≥ 1; ν2 < 1) (3.22)
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where β ≥ 1 is an adjustable parameter. For this scheme, Eq. (3.17) is also valid. Thus it becomes the
nondissipative a scheme when ν = 0 and, therefore, it will not become overly dissipative as ν → 0 (i.e., the
scheme’s numerical dissipation is Courant number insensitive). Moreover, because β ≥ 1, Eqs. (3.12) and
(3.14) along with the comment (b) given following Eq. (3.14) imply that the scheme is stable if ν2 < 1 and
it becomes more dissipative (i.e., more stable) as the value of β increases. However, also because β ≥ 1,

lim
|ν|→1−

τ = β ≥ 1 (3.23)

As such, except for the case β = 1, the scheme does not become the c scheme in the limit of |ν| → 1−, i.e.,
it does not meet all the requirements of an ideal solver.

Note that, unless specified otherwise, in Sec. 4 we consider only the cases in which either Eq. (3.16) or
Eq. (3.22) is assumed.

4. Extensions of the c-τ∗ scheme and related weighted averagings

To proceed, let

(ûx̄−)n
j

def
=

∆x

4

(

un
j − u(P−)

(1 + τ)∆x/4

)

(4.1)

and

(ûx̄+)n
j

def
=

∆x

4

(

u(P+) − un
j

(1 + τ)∆x/4

)

(4.2)

Because |AP−| = |AP+| = (1 + τ)∆x/4 (see Fig. 3), it is easy to see that (ûx̄−)n
j and (ûx̄+)n

j are two
one-sided difference approximations of ∂u/∂x̄ at the mesh point (j, n) with one being evaluated from the left
and another from the right. Also, it follows immediately from Eqs. (3.8), (4.1) and (4.2) that

(ûx̄)n
j =

1

2

[

(ûx̄−)n
j + (ûx̄+)n

j

]

(4.3)

Moreover, by (i) substituting Eqs. (2.8), (3.6) and (3.7) into Eqs.(4.1) and (4.2), and (ii) using Eqs. (3.10)
and (3.17), one arrives at the conclusion that

(ûx̄−)n
j = (ûx̄+)n

j = (ûx̄)n
j (ν = 0) (4.4)

when ν = 0.
With the above preliminaries, several extensions of the c-τ ∗ scheme will be constructed in the following

subsections.

4.1. Scheme w-1

A comparison of Eqs. (4.1)–(4.3) with Eqs. (2.32)–(2.34) reveals that an obvious extension of the c-τ ∗

scheme can be obtained by replacing (ux̄−)n
j and (ux̄+)n

j in Eqs. (2.35) and (2.39) with (ûx̄−)n
j and (ûx̄+)n

j ,
respectively. In other words, the new extension is formed by Eq. (2.8) and

(ux̄)n
j = (w−)n

j (ûx̄−)n
j + (w+)n

j (ûx̄+)n
j (4.5)

with
(w±)n

j = W±((ûx̄−)n
j , (ûx̄+)n

j , α) (4.6)

Because the scheme is the first extension of the c-τ ∗ scheme in which (ux̄)n
j is expressed as an weighted

average of (ûx̄−)n
j and (ûx̄+)n

j , for simplicity, hereafter it will be referred to as Scheme w-1. It has been
shown numerically that Scheme w-1 is stable if |ν| < 1 and α ≥ 0.

Note that, as a result of Eqs. (2.38), (4.4) and (4.6), one concludes that, for any given α ≥ 0, (w−)n
j =

(w+)n
j = 1/2 if ν = 0. In other words, for Scheme w-1, the “weighted” average on the right side of Eq. (4.5)
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becomes a simple average if ν = 0. According to an explanation given in the last paragraph of Sec. 2, this
implies that Scheme w-1 will lose its capability to suppress wiggles or overshoots when ν becomes small.
For this reason, even though the Euler version of Scheme w-1 performs much better than that of the special
scheme referred to in Sec. 2.3 in its ability to resolve shocks and contact discontinuities crisply in a wide
range (from 1 to less than 0.001) of the global Courant number (i.e., the maximal value of local Courant
numbers), it has a serious shortcoming, i.e., wiggles or overshoots can appear near a discontinuity in a
generated solution when the local Courant number there becomes extremely small. In the following, it will
be shown that this weakness can be overcome by simple modifications of Eq. (4.6).

4.2. Scheme w-2

A new scheme, referred to as Scheme w-2 is formed by Eqs. (2.8) and (4.5) with (w±)n
j being given

by Eq. (2.39). In other words, although (ux̄)n
j is still constructed as an weighted average of (ûx̄−)n

j and
(ûx̄+)n

j , the associated weight factors (w±)n
j are evaluated using (ux̄−)n

j and (ux̄+)n
j . Because the last two

parameters, respectively, are identical to the special cases of (ûx̄−)n
j and (ûx̄+)n

j with τ
def
= 1 (see Eqs. (2.12),

(2.32), (2.33), (3.4), (3.5), (4.1), and (4.2)), their values do not vary with ν. As such, (w±)n
j 6= 1/2 and

therefore the weighted average on the right side of Eq. (4.5) will not turn into a simple average when ν = 0.
In other words, Scheme w-2 is still capable of annihilating the numerical wiggles near a discontinuity even if
ν becomes small. It has been shown numerically that Scheme w-2 again is stable if |ν| < 1 and α ≥ 0.

Note that a possible drawback of Scheme w-2 is that the relation |(ux̄−)n
j | < |(ux̄+)n

j | (|(ux̄−)n
j | >

|(ux̄+)n
j |) does not automatically follow from |(ûx̄−)n

j | < |(ûx̄+)n
j | (|(ûx̄−)n

j | > |(ûx̄+)n
j |) and vice versa.

As a result, at some local mesh points, it may happen that, of (ûx̄−)n
j and (ûx̄+)n

j , the one with smaller
absolute value may not be associated with a weight factor > 1/2. According to a discussion given in the
last paragraph of Sec. 2, this implies that there is no guarantee that, at all localities, the weighted-averaging
induced numerical dissipation will be available to suppress wiggles or overshoots. Despite this possible failing,
fortunately it has been demonstrated numerically that, not only are they capable of suppressing wiggles or
overshoots robustly, Scheme w-2 and its Euler extensions are also highly accurate.

In the following, schemes that overcome the weakness of Scheme w-1 and also avoid the theoretically
possible failing associated with Scheme w-2 will be constructed using new weighted-averaging formulae more
advanced than that given in Eq. (2.38).

4.3. New weighted-averaging techniques

To pave the way, first we shall discuss a limitation of Eq. (2.38) as a generator of weight factors.
Let x± 6= 0. Then, for a given α > 0, obviously W− → 1/2 and W+ → 1/2 as |x+/x−| → 1. As such,

when |x+/x−| is very close to 1, then both W− and W+ will be very close to 1/2 unless α � 1. As a result,
in case that (i) (ûx̄±)n

j 6= 0, (ii) |(ûx̄+)n
j /(ûx̄−)n

j | is very close to 1; and (iii) Eqs. (4.6) is assumed, then the
only way to prevent the weighted average that appears on the right side of Eq. (4.5) from becoming almost
a simple average is to increase the value of α used. However, this approach may be impracticable because
numerical evaluation of a quantity such as xα for any real number x generally is hampered by round-off
errors and thus becomes highly inaccurate if the value of α becomes too large, say 100. It is the purpose
of this subsection to introduce new weighted-averaging techniques that do not have the limitaton discussed
above.

For motivation, note that Eqs. (4.5) and (4.6) can be expressed as

(ux̄)n
j = w1x1 + w2x2 (4.7)

and
w1 =

s1

s1 + s2
and w2 =

s2

s1 + s2
(s1 + s2 > 0) (4.8)

respectively if

x1
def
= (ûx̄−)n

j and x2
def
= (ûx̄+)n

j (4.9)

w1
def
= (w−)n

j and w2
def
= (w+)n

j (4.10)
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s1
def
= |(ûx̄+)n

j |α and s2
def
= |(ûx̄−)n

j |α (α ≥ 0) (4.11)

Equation. (4.7) represents an weighted average of only two values x1 and x2. However, for the sake of
generality, weighted averages of two or more values will be considered in the following development.

To proceed, let (i) N be an integer ≥ 2, (ii) s`, ` = 1, 2, . . . , N , be given positive numbers, and (iii)

w`
def
=

s`

S
, ` = 1, 2, . . . , N (4.12)

where

S
def
=

(

N
∑

`=1

s`

)

> 0 (4.13)

(Note: to streamline the following development, here we assume that s` > 0, ` = 1, 2, . . .N , instead of s` ≥ 0,
` = 1, 2, . . . , N , as could be inferred from Eq. (4.11). However, without causing any practical harm, one can
add a very small positive number, such as 10−20, to each member of a set of nonnegative numbers and turn
all of them into positive numbers). It follows from Eqs. (4.12) and (4.13) that

N
∑

`=1

w` = 1, and 1 > w` > 0, ` = 1, 2, . . . , N (4.14)

As such,

W
def
=

N
∑

`=1

w` x` (4.15)

is an “interpolated” weighted average of the real numbers x`. Note that, unless specified otherwise, hereafter
` = 1, 2, . . . , N is assumed.

Let

δ`
def
= w` −

1

N
(4.16)

Then

w` =
1

N
+ δ` (4.17)

Also, with the aid of Eq. (4.14), Eq. (4.16) implies that

N
∑

`=1

δ` = 0 (4.18)

Note that W becomes the simple average of x`, ` = 1, 2, . . . , N , if all δ` = 0. Thus the set {δ1, δ2, . . . , δN}
provides a measure of how far the weighted average is deviated from the simple average. In the following, a
simple way to adjust this deviation will be introduced.

Let
δmin

def
= min{δ`} and δmax

def
= max{δ`} (4.19)

Then Eq. (4.17) and the fact that 1 > w` > 0 for all ` imply that

1 >
1

N
+ δmax and

1

N
+ δmin > 0 (4.20)

Let some δ` 6= 0 (i.e., the case with all w` = 1/N is excluded). Then Eq. (4.18) implies that δmax > 0 > δmin.
The last inequality and Eq. (4.20) can be combined to yield

1 − 1

N
> δmax > 0 > δmin > − 1

N
(some δ` 6= 0) (4.21)
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Note that an immediate result of Eq. (4.21) is

σmax
def
= min

{

1

δmax
(1 − 1

N
), − 1

Nδmin

}

> 1

(some δ` 6= 0) (4.22)

Given any adjustable real parameter σ > 0, let

δ′`
def
= σ δ` (4.23)

Then Eq. (4.18) implies that
N
∑

`=1

δ′` = 0 (4.24)

In turn Eq. (4.24) and

w′
`

def
=

1

N
+ δ′` (4.25)

imply that
N
∑

`=1

w′
` = 1 (4.26)

As such, w′
`, ` = 1, 2, . . . , N , form a new set of weight factors. From Eqs. (4.23) and (4.25) one also concludes

that the disparity of the weight factors (i.e., the deviation of the values of the weight factors from 1/N) will
be amplified (reduced) if σ > 1 (σ < 1).

The condition that
1 ≥ w′

` ≥ 0 (4.27)

will be imposed in the current development. With the aid of Eqs. (4.19), (4.23), and (4.25), and the original
assumption that σ > 0, one concludes that Eq. (4.27) is true if and only if

1 ≥ 1

N
+ σδmax and

1

N
+ σδmin ≥ 0 (4.28)

For the special case that in which all δ` = 0, one has δmin = δmax = 0 and thus Eq. (4.28) is true always.
On the other hand, for the case that some δ` 6= 0, Eqs. (4.21) and (4.22) imply that Eq. (4.28) is equivalent
to

σmax ≥ σ (some δ` 6= 0) (4.29)

Let some δ` 6= 0. Then, according to Eq. (4.22), σmax > 1. Moreover, σmax increases as |δmax| and
|δmin| decrease. In fact, σmax → +∞ as δmax → 0+ and δmin → 0−. Thus the range of the values of σ
allowed becomes larger when |δmax| and |δmin| become smaller. Note that, when W defined in Eq. (4.15)
almost becomes a simple average (i.e., when |δmax| � 1 and |δmin| � 1), the disparity of the weight factors
must be sharply amplified such that the weight average

W ′ def
=

N
∑

`=1

w′
` x` (4.30)

will deviate substantially from the simple average. In this case, the larger range of the values of σ allowed
meets the need to use a larger value of σ. In practice, the value of σ used can be generated using a preset
formula as long as the generated value is less than or equal to σmax. For the case that the value generated
using the preset formula is larger than σmax, σ = σmax is assumed.
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As an example, consider the N = 2 case in which x` and s`, ` = 1, 2, are defined by Eqs. (4.9) and
(4.11). It was explained earlier that, for this case, w1 → 1/2 and w2 → 1/2 as ν → 0. In other words,
the weighted average w1x1 + w2x2 almost becomes a simple average when |ν| � 1. To prevent this from
happening, the weight factors w1 and w2, respectively, are replaced by the new weighted factors w′

1 and w′
2

generated assuming

σ = min

{

σmax,
σo

|ν|

}

(σo > 0) (4.31)

where σo > 0 is a preset parameter in the order of 1. According to Eqs. (4.16), (4.19), and (4.22), the fact
that w1 → 1/2 and w2 → 1/2 as ν → 0 implies that σmax → ∞ as ν → 0. As such Eq. (4.31) implies that
σ � 1 when |ν| � 1.

Note that, for any N = 2 case, one of δ1 and δ2 is δmax while another is δmin. As a result, Eqs. (4.18),
(4.20), and (4.22) imply that

0 < δmax = −δmin < 1/2 (some δ` 6= 0) (4.32)

and

σmax =
1

2 δmax
(some δ` 6= 0) (4.33)

Also for any case with N = 2, δmax > 0 and σ = σmax, Eqs. (4.23), (4.25), (4.32), and (4.33) imply that:
(i) w′

1 = 1 and w′
2 = 0 if δ1 = δmax, and (ii) w′

2 = 1 and w′
1 = 0 if δ2 = δmax.

This completes the description of a new approach by which the weight factors w′
`, ` = 1, 2, . . . , N , are

generated from the given weight factors w`, ` = 1, 2, . . . , N . In the following, Another approach will be
described.

To proceed, the indices of s`, ` = 1, 2, . . . , N , will be reshuffled such that

sN ≥ sN−1 ≥ . . . ≥ s1 > 0 (4.34)

As such, Eqs. (4.12) and (4.13) imply that Eq. (4.14) can be replaced by a set of stronger conditions, i.e.,

N
∑

`=1

w` = 1 and 1 > wN ≥ wN−1 ≥ . . . ≥ w1 > 0 (4.35)

Next let

η`
def
=

s`+1

s`
− 1, ` = 1, . . . , N−1 (4.36)

Then (i) η` ≥ 0, ` = 1, . . . , N−1, and (ii)

s`+1 =

[

∏̀

`′=1

(1 + η`′)

]

s1, ` = 1, . . . , N−1 (4.37)

Given any adjustable real parameter σ > 0, let (i) s̃1 = s1 and

s̃`+1 =

[

∏̀

`′=1

(1 + ση`′)

]

s̃1, ` = 1, . . . , N−1 (4.38)

and (ii)

w̃`
def
=

s̃`

S̃
, ` = 1, 2, . . . , N (4.39)
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where

S̃
def
=

(

N
∑

`=1

s̃`

)

> 0 (4.40)

Because σ > 0 and η` ≥ 0, ` = 1, . . . , N−1, Eq. (4.38) implies that

s̃N ≥ s̃N−1 ≥ . . . ≥ s̃1 > 0 (4.41)

Also, as a result of Eqs. (4.39)–(4.41), one has

N
∑

`=1

w̃` = 1 and 1 > w̃N ≥ w̃N−1 ≥ . . . ≥ w̃1 > 0 (4.42)

As such, w̃`, ` = 1, 2, . . . , N , form a new set of weight factors and

W̃
def
=

N
∑

`=1

w̃` x` (4.43)

is an “interpolated” weighted average of the real numbers x`. Note that, for the special case that sN = sN−1 =
. . . = s1 > 0, it is easy to see that (i) w` = w̃` = 1/N , ` = 1, 2, . . . , N , and (ii) η` = 0, ` = 1, . . . , N−1.

Let `1 and `2 be any pair of integers with 1 ≤ `1 < `2 ≤ N . Then Eqs. (4.12) and (4.37)–(4.39) imply
that

w`2

w`1

=

`2−1
∏

`′=`1

(1 + η`′) (4.44)

and

w̃`2

w̃`1

=

`2−1
∏

`′=`1

(1 + ση`′) (4.45)

Because σ > 0 and η` ≥ 0, ` = 1, . . . , N−1, a comparison of Eqs. (4.44) and (4.45) reveals that w`2/w`1 =
w̃`2/w̃`1 = 1 if η` = 0 for all ` with `1 ≤ ` ≤ (`2 − 1). However, in case that η` 6= 0 for at least one ` with
`1 ≤ ` ≤ (`2 − 1), one has

w̃`2

w̃`1























>
w`2

w`1

if σ > 1

<
w`2

w`1

if σ < 1

=
w`2

w`1

if σ = 1

(4.46)

¿From the above discussions, one concludes that, except for the special case in which sN = sN−1 = . . . =
s1, the disparity of w̃` is greater (less) than that of w` if σ > 1 (σ < 1). Note that the current approach
for amplifying the weight factors has one advantage over the approach described earlier, i.e., in the current
approach, there is no upper bound for the value of σ one could use. Thus, in the current approach, Eq. (4.31)
can be simplified as

σ =
σo

|ν| (4.47)

where σo > 0 again is a preset parameter in the order of 1.
Note that, after sorting through the differences in the notations used in [49] and here, and using the

fact that the value of the smaller of the parameters (s−)n
j and (s+)n

j defined in Eq. (3.23) of [50] is zero, it
can be shown that the weighted-averaging technique introduced in Eqs. (3.23), (3.26), and (3.27) of [50] is
equivalent to the special case N = 2 and σo = 1/2 of the second approach just described above.

4.4. Schemes w-3 and w-4
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Consider the N = 2 case in which x` and s`, ` = 1, 2, are defined by Eqs. (4.9) and (4.11). Let (w′
−)n

j

and (w′
+)n

j , respectively, be the weight factors associated with (ûx̄−)n
j and (ûx̄+)n

j generated using the first
approach described in Sec. 4.3. Then, by definition, Scheme w-3 is formed by Eq. (2.8) and

(ux̄)n
j = (w′

−)n
j (ûx̄−)n

j + (w′
+)n

j (ûx̄+)n
j (4.48)

On the other hand, let (w̃−)n
j and (w̃+)n

j , respectively, be the weight factors associated with (ûx̄−)n
j

and (ûx̄+)n
j generated using the second approach described in Sec. 4.3. Then, by definition, Scheme w-4 is

formed by Eq. (2.8) and
(ux̄)n

j = (w̃−)n
j (ûx̄−)n

j + (w̃+)n
j (ûx̄+)n

j (4.49)

5. Courant number and Mach number insensitive solvers

We consider a dimensionless form of the 1-D unsteady Euler equations of a perfect gas. Let ρ, v, p, and
γ be the mass density, velocity, static pressure, and constant specific heat ratio, respectively. Let

u1 = ρ, u2 = ρv, u3 = p/(γ − 1) + (1/2)ρv2 (5.1)

f1 = u2 (5.2)

f2 = (γ − 1)u3 + (1/2)(3 − γ)(u2)
2/u1 (5.3)

and
f3 = γu2u3/u1 − (1/2)(γ − 1)(u2)

3/(u1)
2 (5.4)

Then the Euler equations can be expressed as

∂um

∂t
+

∂fm

∂x
= 0, m = 1, 2, 3 (5.5)

The integral form of Eq. (5.5) in space-time E2 is

∮

S(V )

~hm · d~s = 0, m = 1, 2, 3 (5.6)

where ~hm = (fm, um), m = 1, 2, 3, are the space-time mass, momentum, and energy current density vectors,
respectively.

As a preliminary, let

fm,k
def
= ∂fm/∂uk, m, k = 1, 2, 3 (5.7)

Let F be the Jocobian matrix formed by fm,k, m, k = 1, 2, 3. Then Eqs. (5.2)–(5.4) imply that

F =

















0 1 0

γ − 3

2

(

u2

u1

)2

(3 − γ)
u2

u1
γ − 1

(γ − 1)

(

u2

u1

)3

− γ
u2u3

(u1)2
γ

u3

u1
− 3(γ − 1)

2

(

u2

u1

)2

γ
u2

u1

















(5.8)

Let c be the sonic speed. Then

c =

√

√

√

√γ(γ − 1)

[

u3

u1
− 1

2

(

u2

u1

)2
]

(5.9)
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Let G be the 3 × 3 matrix defined by

G
def
=

















1
u1√
2c

u1√
2c

u2

u1

u2√
2c

− u1√
2

u2√
2c

+
u1√

2

1

2

(

u2

u1

)2
(u2)

2

2
√

2cu1

− u2√
2

+
u1c√

2(γ − 1)

(u2)
2

2
√

2cu1

+
u2√

2
+

u1c√
2(γ − 1)

















(5.10)

Then the inverse of G is given by

G−1 =



















1 +
1 − γ

2c2

(

u2

u1

)2
(γ − 1)u2

c2u1

1 − γ

c2

(γ − 1)(u2)
2

2
√

2c(u1)3
+

u2√
2(u1)2

(1 − γ)u2√
2c(u1)2

− 1√
2u1

γ − 1√
2cu1

(γ − 1)(u2)
2

2
√

2c(u1)3
− u2√

2(u1)2
(1 − γ)u2√

2c(u1)2
+

1√
2u1

γ − 1√
2cu1



















(5.11)

Moreover, for any numbers a1, a2, . . ., an, let diag(a1, a2, . . . , an) denote the diagonal matrix with a1, a2,
. . ., an being the diagonal elements on the first, second, . . ., and n-th rows, respectively. Then, by using
Eqs. (5.8)–(5.11) and v = u2/u1, one has

G−1 F G = diag(v, v − c, v + c) (5.12)

For any (j, n) ∈ Ω and any (x, t) ∈ SE(j, n), um(x, t), fm(x, t), and ~hm(x, t) are approximated by

u∗
m(x, t ; j, n), f∗

m(x, t ; j, n), and ~h∗
m(x, t ; j, n), respectively. They will be defined shortly. Let

u∗
m(x, t ; j, n)

def
= (um)n

j + (umx)n
j (x − xj) + (umt)

n
j (t − tn) (5.13)

where (um)n
j , (umx)n

j , and (umt)
n
j are constants in SE(j, n).

By definition, for each m = 1, 2, 3 and each k = 1, 2, 3, fm and fm,k are functions of u1, u2 and u3. Let
(fm)n

j and (fm,k)n
j denote the values of fm and fm,k, respectively, when the independent variables u1, u2,

and u3, respectively, assume the values of (u1)
n
j , (u2)

n
j , and (u3)

n
j . Let

(fmx)n
j

def
=

3
∑

k=1

(fm,k)n
j (ukx)n

j (5.14)

and

(fmt)
n
j

def
=

3
∑

k=1

(fm,k)n
j (ukt)

n
j (5.15)

Because

∂fm

∂x
=

3
∑

k=1

fm,k
∂uk

∂x
(5.16)

and

∂fm

∂t
=

3
∑

k=1

fm,k
∂uk

∂t
(5.17)
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(fmx)n
j and (fmt)

n
j can be considered as the numerical analogues of the values of ∂fm/∂x and ∂fm/∂t at

(xj , t
n), respectively. As a result, we assume that

f∗
m(x, t ; j, n)

def
= (fm)n

j + (fmx)n
j (x − xj) + (fmt)

n
j (t − tn) (5.18)

Because ~hm = (fm, um), we also assume that

~h∗
m(x, t ; j, n)

def
= (f∗

m(x, t ; j, n), u∗
m(x, t ; j, n)) (5.19)

Note that, by their definitions, (i) (fm)n
j and (fm,k)n

j , m = 1, 2, 3, are functions of (um)n
j , m = 1, 2, 3, (ii)

(fmx)n
j , m = 1, 2, 3, are functions of (um)n

j and (umx)n
j , m = 1, 2, 3, and (iii) (fmt)

n
j are functions of (um)n

j

and (umt)
n
j , m = 1, 2, 3.

Moreover we assume that, for any (x, t) ∈ SE(j, n), um = u∗
m(x, t ; j, n) and fm = f∗

m(x, t ; j, n) satisfy
Eq. (5.5), i.e.,

∂u∗
m(x, t ; j, n)

∂t
+

∂f∗
m(x, t ; j, n)

∂x
= 0 (5.20)

According to Eqs. (5.13) and (5.18), Eq. (5.20) is equivalent to

(umt)
n
j = −(fmx)n

j (5.21)

Because (fmx)n
j are functions of (um)n

j and (umx)n
j , Eq. (5.21) implies that (umt)

n
j are also functions of

(um)n
j and (umx)n

j . From this result and the facts stated following Eq. (5.19), one concludes that the only
independent discrete variables needed to be solved in the current marching scheme are (um)n

j and (umx)n
j .

In the current development, the Euler counterpart of Eq. (2.11), i.e.,

∮

S(CE(j,n))

~h∗
m · d~s = 0 (5.22)

is assumed. For any (j, n) ∈ Ω, let

(umx̄)n
j

def
=

∆x

4
(umx)n

j (5.23)

and

(sm)n
j

def
= (umx̄)n

j +
∆t

∆x
(fm)n

j +
(∆t)2

4∆x
(fmt)

n
j (5.24)

Then, with the aid of Eqs. (5.13)–(5.15), (5.18), (5.19), and (5.21), Eq. (5.22) implies that

(um)n
j =

1

2

[

(um)
n−1/2
j−1/2 + (um)

n−1/2
j+1/2 + (sm)

n−1/2
j−1/2 − (sm)

n−1/2
j+1/2

]

(5.25)

Eq. (5.25) forms the first component of each of the Euler schemes to be constructed here. As will be shown,
the second component which evaluates (umx̄)n

j is scheme dependent.

5.1. The Euler c-τ scheme

To proceed, consider any (j, n) ∈ Ω. Let ~u, ~un
j , (~ux)n

j , (~ux̄)n
j , and (~ut)

n
j , respectively, denote the column

matrices formed by um, (um)n
j , (umx)n

j , (umx̄)n
j , (umt)

n
j , m = 1, 2, 3. Moreover, recall that the fluid velocity

v, the sonic speed c and the matrices F , G, and G−1 are functions of um, m = 1, 2, 3. Thus we will define
vn

j , cn
j , F n

j , Gn
j , and (G−1)n

j , respectively, to be the values of v, c, F , G, and G−1 when the independent
variables um, m = 1, 2, 3, respectively, assume the values of (um)n

j , m = 1, 2, 3. Given the above definitions,
let

(ν1)
n
j

def
=

vn
j ∆t

∆x
, (ν2)

n
j

def
=

(v − c)n
j ∆t

∆x
, and (ν3)

n
j

def
=

(v + c)n
j ∆t

∆x
(5.26)
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and

(νmax)n
j

def
= (|vn

j | + |cn
j |)

∆t

∆x
(5.27)

Because
(νmax)n

j = max{|(ν1)
n
j |, |(ν2)

n
j |, |(ν3)

n
j |} (5.28)

(νmax)n
j can be interpreted as the Courant number at the mesh point (j, n).

Next, for each m = 1, 2, 3, let the points P +
m and P−

m , and the parameter (τm)n
j shown in Fig. 5 be

defined in the exact same manner by which the points P + and P−, and the parameter τ were defined (see

Fig. 3). Moreover, let (i) [~b ]m denote the mth component of any column matrix ~b, (ii)

[

(G−1)n
j ~u
]

m
(P+

m)
def
=
[

(G−1)n
j ~u

n−1/2
j+1/2

]

m
+ (∆t/2)

[

(G−1)n
j (~ut)

n−1/2
j+1/2

]

m
−
[

1 − (τm)n
j

]

[

(G−1)n
j (~ux̄)

n−1/2
j+1/2

]

m
(5.29)

and (iii)

[

(G−1)n
j ~u
]

m
(P−

m)
def
=
[

(G−1)n
j ~u

n−1/2
j−1/2

]

m
+ (∆t/2)

[

(G−1)n
j (~ut)

n−1/2
j−1/2

]

m
+
[

1 − (τm)n
j

]

[

(G−1)n
j (~ux̄)

n−1/2
j−1/2

]

m
(5.30)

Note that, in the current development of the procedures for evaluating (~ux̄)n
j , (G−1)n

j is treated as a fixed
constant square matrix for any given fixed (j, n) ∈ Ω while ~u is treated as a variable column matrix (this
practice, in spirit, is similar to the definition of u∗(x, t ; j, n) given in Eq. (2.3) where un

j , (ux)n
j , and (ut)

n
j

are treated as constants while x and t are treated as variables). Thus

∂
[

(G−1)n
j ~u
]

m

∂t
=

[

(G−1)n
j

∂~u

∂t

]

m

and
∂
[

(G−1)n
j ~u
]

m

∂x̄
=

[

(G−1)n
j

∂~u

∂x̄

]

m

(5.31)

It follows that
[

(G−1)n
j (~ut)

n−1/2
j±1/2

]

m
and

[

(G−1)n
j (~ux̄)

n−1/2
j±1/2

]

m
, respectively, are the numerical analogues of

∂
[

(G−1)n
j ~u
]

m
/∂t and ∂

[

(G−1)n
j ~u
]

m
/∂x̄ at the mesh point (j ± 1/2, n− 1/2). With the aid of this interpre-

tation, Eqs. (5.23), (5.29), and (5.30) imply that
[

(G−1)n
j ~u
]

m
(P+

m) is a first-order Taylor’s approximation of
[

(G−1)n
j ~u
]

m
at point P+

m evaluated using the marching variables at the mesh point (j + 1/2, n− 1/2) while
[

(G−1)n
j ~u
]

m
(P−

m) is a first-order Taylor’s approximation of
[

(G−1)n
j ~u
]

m
at point P−

m evaluated using the
marching variables at the mesh point (j−1/2, n−1/2). As such, Eqs. (5.29) and (5.30) can be considered as
the Euler versions of Eqs. (3.4) and (3.5), respectively. In the following, we will construct the Euler versions
of Eqs. (3.6)–(3.9).

By using Eqs. (5.14), (5.21), and (5.23), one has

(∆t/2)(G−1)n
j (~ut)

n−1/2
j±1/2 = −(2∆t/∆x)(G−1)n

j F
n−1/2
j±1/2 Gn

j (G−1)n
j (~ux̄)

n−1/2
j±1/2 (5.32)

Let F
n−1/2
j±1/2 ≈ F n

j . Then Eqs. (5.12) and (5.26) imply that

∆t

∆x
(G−1)n

j F
n−1/2
j±1/2 Gn

j ≈ ∆t

∆x
(G−1)n

j F n
j Gn

j = diag((ν1)
n
j , (ν2)

n
j , (ν3)

n
j ) (5.33)

Combining Eqs. (5.32) and (5.33), one has

(∆t/2)
[

(G−1)n
j (~ut)

n−1/2
j±1/2

]

m
≈ −2(νm)n

j

[

(G−1)n
j (~ux̄)

n−1/2
j±1/2

]

m
(5.34)

Substituting Eq. (5.34) into Eqs. (5.29) and (5.30), one arrives at the current Euler versions of Eqs. (3.6)
and (3.7), i.e.,

[

(G−1)n
j ~u
]

m
(P+

m) ≈
[

(G−1)n
j ~u

n−1/2
j+1/2

]

m
−
[

2(νm)n
j + 1 − (τm)n

j

]

[

(G−1)n
j (~ux̄)

n−1/2
j+1/2

]

m
(5.35)
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and
[

(G−1)n
j ~u
]

m
(P−

m ) ≈
[

(G−1)n
j ~u

n−1/2
j−1/2

]

m
−
[

2(νm)n
j − 1 + (τm)n

j

]

[

(G−1)n
j (~ux̄)

n−1/2
j−1/2

]

m
(5.36)

Next we introduce the Euler version of Eq. (3.8), i.e.,

[

(G−1)n
j ~u
]

mx̄
(j, n)

def
=

∆x

4

[

(G−1)n
j ~u
]

m
(P+

m) −
[

(G−1)n
j ~u
]

m
(P−

m)
[

1 + (τm)n
j

]

∆x/2

(

(τm)n
j 6= −1

)

, m = 1, 2, 3 (5.37)

where
[

(G−1)n
j ~u
]

m
(P+

m) and
[

(G−1)n
j ~u
]

m
(P−

m), respectively, are to be evaluated using Eqs. (5.29) and (5.30)
instead of the approximated formulae Eqs. (5.35) and (5.36). With the aid of Fig. 5, Eq. (5.37) implies that
[

(G−1)n
j ~u
]

mx̄
(j, n) is a central-difference approximation of ∂

[

(G−1)n
j ~u
]

m
/∂x̄ at the mesh point (j, n).

To proceed, note that
∂
[

(G−1)n
j ~u
]

∂x̄
= (G−1)n

j

∂~u

∂x̄
(5.38)

Thus
∂~u

∂x̄
= Gn

j

∂
[

(G−1)n
j ~u
]

∂x̄
(5.39)

Let
[

(G−1)n
j ~u
]

x̄
(j, n) be the column matrix formed by

[

(G−1)n
j ~u
]

mx̄
(j, n), m = 1, 2, 3 (which are defined in

Eq. (5.37)). Then, with the aid of Eq. (5.39), one concludes that

(~̂ux̄)n
j

def
= Gn

j

{

[

(G−1)n
j ~u
]

x̄
(j, n)

}

(5.40)

represents a central difference approximation of ∂~u/∂x̄ at the mesh point (j, n). Thus

(~ux̄)n
j = (~̂ux̄)n

j (5.41)

is an Euler version of Eq. (3.9). The Euler c-τ scheme is defined by Eqs. (5.25), (5.29), (5.30), (5.37), (5.40)
and (5.41). It has been shown by numerical experiments that stability of this scheme generally requires that

(νmax)n
j < 1; and (τm)n

j ≥ τo

(

((νm)n
j )2
)

((j, n) ∈ Ω), m = 1, 2, 3 (5.42)

Obviously, the form of Eq. (5.42) is very similar to that of Eq. (3.12).
Consider the special case in which (τ1)

n
j = (τ2)

n
j = (τ3)

n
j = τn

j . For this case, (i) points P +
1 , P+

2 and P+
3

coincide (the resulting common point will be denoted by P +); and (ii) points P−
1 , P−

2 , and P−
3 also coincide

(the resulring common point will be denoted by P−). As such it can be shown easily that Eqs. (5.29) and
(5.30) reduce to

~u(P+) =
[

~u + (∆t/2)~ut − (1 − τn
j )~ux̄

]n−1/2

j+1/2
(5.43)

and
~u(P−) =

[

~u + (∆t/2)~ut + (1 − τn
j )~ux̄

]n−1/2

j−1/2
(5.44)

respectively. Also Eqs. (5.37) and (5.40) can be used to conclude that

(~̂ux̄)n
j

def
=

~u(P+) − ~u(P−)

2(1 + τn
j )

(τn
j 6= −1) (5.45)

Note that: (i) with the aid of Eq. (5.28) and the fact that τo(s) is strictly monotonically increasing in the
interval 0 < s < 1, one concludes that Eq. (5.42) reduces to

(νmax)n
j < 1; and τn

j ≥ τo

(

((νmax)n
j )2
)

((j, n) ∈ Ω) (5.46)
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for this special case; and (ii) Eqs. (3.4), (3.5), and (3.8), respectively, are very similar to their Euler versions
Eqs. (5.43)–(5.45).

The above simplified scheme has the advantage in its structural simplicity. However, it suffers from the
loss of the capability to adjust the value of individual (τm)n

j . This is a serious disadvantage because the
theory presented in Sec. 3 along with the fact that Eqs. (3.6) and (3.7), respectively, are very much similar
to Eqs. (5.35) and (5.36) in algebraic form strongly suggests that the Euler c-τ scheme will perform better
if, for each m, the value of (τm)n

j can be adjusted to match the value of τo

(

((νm)n
j )2
)

. This is particularly
true if, for some (j, n) ∈ Ω, there is a large disparity among the values of |(νm)n

j |, m = 1, 2, 3, i.e.,

(νmax)n
j � min{|(ν1)

n
j |, |(ν2)

n
j |, |(ν3)

n
j |} (5.47)

As an example, consider an Euler flow solution with an extremely small Mach number everywhere (i.e.,
|vn

j | � |cn
j |, (j, n) ∈ Ω), For such a case (see Eqs. (5.26)–(5.28)),

|(ν1)
n
j | � (νmax)n

j ≈ |(ν2)
n
j | ≈ |(ν3)

n
j | ((j, n) ∈ Ω) (5.48)

As such, Eqs. (3.13) and (5.46) can be used to show that

τo

(

((ν1)
n
j )2
)

� τn
j (5.49)

Because the c-τ scheme tends to become more dissipative as the value of τ increases from τo(ν
2) (see comment

(b) given following Eq. (3.14)), the fact that Eqs. (5.35) and (5.36), respectively, are very much similar to
Eqs. (3.6) and (3.7) in algebraic form strongly suggests that the component

[

(G−1)n
j ~u
]

1
will become highly

dissipative under the condition Eq. (5.49). As such, one expects that a solution to the simplfied Euler c-τ
scheme would become highly dissipative at a region with a small Mach number.

5.2. The Euler c-τ∗ schemes

Let hm(s) (0 ≤ s < 1), m = 1, 2, 3, be strictly monotonically increasing smooth functions which satisfy
the current version of Eq. (3.15), i.e.,

hm(0) = 0; lim
s→1−

hm(s) = 1; and hm(s) ≥ τo(s) if 0 < s < 1, m = 1, 2, 3 (5.50)

Then, based on the similarity in form that existed between Eqs. (3.6)–(3.8) and Eqs. (5.35)–(5.37), an ideal
Euler c-τ∗ scheme can be formed as a special Euler c-τ scheme in which

(τm)n
j = hm

(

(

(νm)n
j

)2
)

(|(νm)n
j | < 1), m = 1, 2, 3 (5.51)

Obviously, Eq. (5.51) is the Euler version of Eq. (3.16).
For the same reason that justifies the use of the relation Eq. (3.22), a special Euler c-τ ∗ scheme can be

defined as a special Euler c-τ scheme in which

(τm)n
j = (βm)n

j |(νm)n
j | ((βm)n

j ≥ 1; |(νm)n
j | < 1), m = 1, 2, 3 (5.52)

Here (βm)n
j ≥ 1, m = 1, 2, 3, are adjustable parameters which may vary from one mesh point to another.

Corresponding to the simplified Euler c-τ scheme defined by Eqs. (5.25), (5.41), and (5.43)–(5.45), one
can construct an Euler c-τ∗ scheme in which

τn
j = h

(

(

(νmax)n
j

)2
)

(|(νmax)n
j | < 1) (5.53)

where h(s) (0 ≤ s < 1) is any strictly monotonically increasing smooth function which satisfies Eq. (3.15).
Obviously, we can also construct another scheme in which

τn
j = βn

j |(νmax)n
j | (βn

j ≥ 1; |(νmax)n
j | < 1) (5.54)
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Here βn
j ≥ 1 is an adjustable parameter which may vary from one mesh point to another.

5.3. Other Euler extensions

Let
[

(G−1)n
j ~u
]

mx̄−
(j, n)

def
=

∆x

4

[

(G−1)n
j ~un

j

]

m
−
[

(G−1)n
j ~u
]

m
(P−

m)
[

1 + (τm)n
j

]

∆x/4
(5.55)

and
[

(G−1)n
j ~u
]

mx̄+
(j, n)

def
=

∆x

4

[

(G−1)n
j ~un

j

]

m
(P+

m) −
[

(G−1)n
j ~un

j

]

m
[

1 + (τm)n
j

]

∆x/4
(5.56)

By definition,
[

(G−1)n
j ~u
]

mx̄−
(j, n) and

[

(G−1)n
j ~u
]

mx̄+
(j, n) are two one-sided difference approximations

of ∂
[

(G−1)n
j ~u
]

m
/∂x̄ at the mesh point (j, n) with one being evaluated from the left and another from

the right. Let (τm)n
j be defined using either Eq. (5.51) or Eq. (5.52). Then, for each m, one can define

[

(G−1)n
j ~u
]w

mx̄
(j, n) to be an weighted average of

[

(G−1)n
j ~u
]

mx̄−
(j, n) and

[

(G−1)n
j ~u
]

mx̄+
(j, n) using any

weighted-averaging technique described in Sec. 4. As an example, an weighted average constructed using the
second approach described in sec. 4.3 with N = 2 is given by

[

(G−1)n
j ~u
]w

mx̄
(j, n)

def
=

[1 + σmηm−]
n
j

[

(G−1)n
j ~u
]

mx̄+
(j, n) + [1 + σmηm+]

n
j

[

(G−1)n
j ~u
]

mx̄−
(j, n)

[2 + σm(ηm− + ηm+)]
n
j

(5.57)

Here

(ηm±)n
j

def
=

∣

∣

∣

[

(G−1)n
j ~u
]

mx̄±
(j, n)

∣

∣

∣

min
{∣

∣

∣

[

(G−1)n
j ~u
]

mx̄+
(j, n)

∣

∣

∣ ,
∣

∣

∣

[

(G−1)n
j ~u
]

mx̄−
(j, n)

∣

∣

∣

} − 1 ≥ 0 (5.58)

and

(σm)n
j

def
=

σo

|(νm)n
j |

(5.59)

with σo > 0 being a preset number in the order of 1. Note that: (i) for each (j, n) ∈ Ω, the value of the
smaller of (ηm+)n

j and (ηm−)n
j is zero; and (ii) to avoid dividing by zero, in practice, a small positive number

such that 10−60 should be added to each of the denominators that appear in Eqs. (5.58) and (5.59).
Let

[

(G−1)n
j ~u
]w

x̄
(j, n) be the column matrix formed by

[

(G−1)n
j ~u
]w

mx̄
(j, n), m = 1, 2, 3 (which are defined

in Eq. (5.57)). Then, with the aid of Eq. (5.39), one concludes that

(~uw
x̄ )n

j
def
= Gn

j

{

[

(G−1)n
j ~u
]w

x̄
(j, n)

}

(5.60)

represents an weighted-averaging approximation of ∂~u/∂x̄ at the mesh point (j, n). Thus an Euler weighted-
averaging c-τ∗ scheme can be formed by Eq. (5.25) and

(~ux̄)n
j = (~uw

x̄ )n
j (5.61)

For the simplified case in which (τ1)
n
j = (τ2)

n
j = (τ3)

n
j = τn

j , Eqs. (5.55) and (5.56) are replace by

(~ux̄−)n
j

def
=

~un
j − ~u(P−)

1 + τn
j

(5.62)

and

(~ux̄+)n
j

def
=

~u(P+) − ~un
j

1 + τn
j

(5.63)
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respectively. Let (i) τn
j be defined using either Eq. (5.53) or Eq. (5.54); and (ii) (umx̄±)n

j denotes the mth
component of (~ux̄±)n

j . Then, for each m, an weighted average of (umx̄−)n
j and (umx̄+)n

j constructed using
the second approach described in Sec. 4.3 is given by

(uw
mx̄)n

j
def
=

[

1 + σn
j (ηm−)n

j

]

(umx̄+)n
j +

[

1 + σn
j (ηm+)n

j

]

(umx̄−)n
j

[2 + σ(ηm− + ηm+)]
n
j

(5.64)

Here

(ηm±)n
j

def
=

|(umx̄±)n
j |

min{|(umx̄+)n
j |, |(umx̄−)n

j |}
− 1 ≥ 0 (5.65)

and
σn

j
def
=

σo

(νmax)n
j

(5.66)

with σo being a preset number in the order of 1. Obviously a simplified Euler weighted-averaging c-τ ∗ scheme
can again be formed using Eqs. (5.25) and (5.61) if (~uw

x̄ )n
j denotes the column matrix formed by (uw

mx̄)n
j ,

m = 1, 2, 3.
Accuracy of two special Euler c-τ∗ schemes will be evaluated in Sec. 6. The first is a simplified scheme

in which we assume that

|(νmax)n
j | < 1; τn

j = β|νmax|; and σn
j =

σo

(νmax)n
j

(j, n) ∈ Ω (5.67)

Note that: (i) β ≥ 1 and σo > 0 are preset numbers in the order of 1; and (ii) the mesh point dependent
parameter βn

j which appears in Eq. (5.54) is replaced by the mesh point independent parameter β here.
Moreover, for a reason given immediately following Eq. (5.49), one would expect that a solution to such a
simplified scheme becomes highly dissipative at a region with a small Mach number, i.e., the scheme is Mach
number sensitive. Therefore, the first scheme will be referred to as the “Mach number sensitive scheme” in
Sec. 6. Nevertheless this scheme generally is still Courant number insensitive. In fact the so called “new ”
Courant number insensitive solutions presented in Figs. 4–7 of [50] and Figs. 9 and 10 of [52] are generated
using the current simplified scheme with β = 1.0 and σo = 0.5.

In the second scheme to be evaluated in Sec. 6, we assume that

|(νmax)n
j | < 1; (τm)n

j = βm|(νm)n
j |; and (σm)n

j
def
=

σo

|(νm)n
j |

((j, n) ∈ Ω), m = 1, 2, 3 (5.68)

Note that: (i) βm ≥ 1, m = 1, 2, 3, and σo > 0 are preset numbers in the order of 1; and (ii) the mesh
point dependent parameter (βm)n

j which appears in Eq. (5.52) is replaced by the mesh point independent
parameter βm here. As will be shown in Sec. 6, not only is it Courant number insensitive, the second scheme
is also Mach number insensitive. As such it will be referred to as the Mach number insensitive scheme in
Sec. 6.

6. Numerical results

In this section, accuracy of the Mach number sensitive and insensitive schemes defined at the end
of Sec. 5 will be evaluated by comparing their numerical solutions with the known analytical solutions of
several shock tube problems. Without exception, (i) the spatial computational domaim which is defined by
−0.505 ≤ x ≤ 0.505, is divided into 101 uniform intervals with ∆x = 0.01; and (ii) the specific heat ratio
γ = 1.4.

At any time t ≥ 0, the exact solutions of a set of shock tube problems considered here are given by

(ρ, p, v) =







(0.125, 1.0,
√

0.14 ξ) if x <
√

0.14 ξt

(10.0, 1.0,
√

0.14 ξ) if x >
√

0.14 ξt

(6.1)
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Here, for each problem in the set, ξ is a defining constant parameter. As such, for each problem, (i) p and
v do not vary with x and t; and (ii) there is a contact (density) discontinuity which moves with the velocity
= v. Obviously the discontinuity occurs at x = 0 when t = 0. Moreover, because γ = 1.4, Eq. (6.1) implies
that

c =

√

γp

ρ
=







√
11.2

.
= 3.3466 if x <

√
0.14 ξt

√
0.14

.
= 0.3742 if x >

√
0.14 ξt

(6.2)

and

M
def
=

v

c
=







√
0.0125 ξ

.
= 0.1118ξ if x <

√
0.14 ξt

ξ if x >
√

0.14 ξt

(6.3)

First consider the case with ξ = 0.01. According to Eqs. (6.1) and (6.2), the flow field is characterized by
extremely small values of M (0.001118 ≤ M ≤ 0.01) and a contact discontinuity moving with an extremely
small velocity (

.
= 0.00374). This problem, designated as Problem no. 1, is solved by the Mach number

sensitive scheme assuming ∆t = 0.0024, σo = 2.0, and β = 1.0. It is also solved by the Mach number
insensitive scheme assuming ∆t = 0.0024 and σo = β1 = β2 = β3 = 2.0. Based on Eqs. (6.1) and (6.2), and
the given values of ξ, ∆x, and ∆t, it is estimated that the maximum local Courant number ecountered in
each simulation is 0.804. At t = 60.0 = 25000∆t (i.e.,

√
0.14 ξt

.
= 0.2245), numerical values of pressure and

velocity obtained from both simulations match the constant exact solution values to at least seven significant
digits. As such no graphical comparisons of these numerical variables with their exact solution values are
given. On the other hand, numerical values of density and Mach number at t = 60.0 are compared with
the exact solution values in Fig. 6. It is seen that, for this problem characterized by extremely small values
of M , the contact discontinuity is resolved much more crisply by the numerical values generated using the
Mach number insensitive scheme than those generated using the Mach number sensitive scheme. Note that
this difference in the schemes’ capability to resolve the contact discontinuity could become more pronounced
if the chosen value of β is raised from 1.0 to 2.0, i.e., the value shared by β1, β2, and β3. However, for the
current case with very small values of (ν1)

n
j , reducing each value of σo and β1 from 2.0 to 1.0 will result in

computational instabilty—obviously, at some (j, n), the assigned values of (σ1)
n
j and (τ1)

n
j become too small

to sustain stabilty .
Next consider the case with ξ = 10.0. For this case, the flow field is characterized by relatively large

values of M (1.118 ≤ M ≤ 10.0) and a contact discontinuity moving with a relatively large velocity (
.
= 3.74).

This problem, designated as Problem no. 2, is solved by the Mach number sensitive scheme assuming
∆t = 0.0012, σo = 2.0, and β = 1.0. It is also solved by the Mach number insensitive scheme assuming
∆t = 0.0012 and σo = β1 = β2 = β3 = 2.0. It is estimated that the maximum local Courant number
ecountered in each simulation is 0.851. At t = 0.06 = 50∆t (i.e.,

√
0.14 ξt

.
= 0.2245), numerical values of

pressure and velocity obtained from both simulations again match the constant exact solution values to at
least seven significant digits. Moreover, as shown in Fig. 7, for this problem with relatively large values of
M , the contact discontinuity is resolved crisply by both schemes. A comparion of these results and those
shown in Fig. 6 reveals that the Mach number sensitive scheme is indeed Mach number sensitive while the
Mach number insensitive scheme is indeed Mach number insensitive.

The last shock tube problem to be considered is Sod’s problem [61]. For this problem, (i) at t = 0,

(ρ, p, v) =







(1.0, 1.0, 0.0) if x < 0

(0.125, 0.1, 0.0) if x > 0
(6.4)

and (ii) 0.0 ≤ M ≤ 0.929 for all x and t ≥ 0. This problem, designated as Problem no. 3, is solved by the
Mach number sensitive scheme assuming ∆t = 4 × 10−6 and σo = β = 1.0. It is also solved by the Mach
number insensitive scheme assuming ∆t = 4 × 10−6 and σo = β1 = β2 = β3 = 1.0. The estimated maximal
local Courant number encounted in each simulation is 0.00088. At t = 0.2 = 50000∆t, the computed solutions
are compared with the exact solution in Fig. 8. In spite of the extremely small maximal local Courant number
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encountered, it is seen that the numerical results generated by both schemes match very well with the exact
solution.

Problem no. 3 is also solved by (i) the Mach number sensitive scheme assuming ∆t = 4×10−3 and σo =
β = 1.0; and (ii) the Mach number insensitive scheme assuming ∆t = 4×10−3 and σo = β1 = β2 = β3 = 1.0.
The estimated maximal local Courant number encountered for each simulation is 0.88. At t = 0.2 = 50∆t,
the computed solutions are compared with the exact solution in Fig. 9. It is seen that the numerical solutions
shown in Fig. 8 do not deteriorated much from the current results generated with a much larger maximal
local Courant number. As such, both schemes are indeed Courant number insensitive.

7. Conclusions and discussions

Generally speaking, a stable numerical marching for a non-linear problem requires the presence of
a sufficient amount of numerical dissipation. However, accuracy of the numerical results, especially for
an unsteady problem, will suffer if too much numerical dissipation is present. As such, a careful control
of numerical dissipation is a must for an accurate and stable non-linear unsteady numerical simulation.
However, a proper control of numerical dissipation is a very difficult task. Although one can increase the
numerical dissipation rather easily, it is much harder to reduce it when accuracy consideration requires it.

The CE/SE method is developed from a set of non-dissipative solvers. As such each CE/SE solver is
an extension of a core non-dissipative scheme. It is this unique feature that make it much easier to reduce
numerical dissipation in a CE/SE simulation. It is also the key reason behind the successful construction of
the Courant number and Mach number insensitive Euler solvers described in this paper.

For the 2D and 3D unsteady Euler equations, there are two and three associated Jacobian matrices,
respectively. In general, it is impossible to diagonalize these associated Jacobian matrices simultaneously
using the same diagonalization matrix. Thus extension of the current work to a space of higher dimension
is by no means trivial.
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Figure 3.—Definition of points P–, M– ,M+, and P+.
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Figure 5.—Definition of points P–, M–, M+, and P+.
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Figure 6. Solution comparison for Problem No. 1.
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Figure 7. Solution comparison for Problem No. 2.
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Figure 8. Solution comparison for Problem No. 3 (CFL=0.00088).
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Figure 9. Solution comparison for Problem No. 3 (CFL=0.88).
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